The amino terminal F-box domain of Petunia inflata S-locus F-box protein is involved in the S-RNase-based self-incompatibility mechanism

نویسندگان

  • Xiaoying Meng
  • Zhihua Hua
  • Penglin Sun
  • Teh-hui Kao
چکیده

BACKGROUND AND AIMS Pistils of flowering plants possessing self-incompatibility (SI) can distinguish between self and non-self pollen, and only allow non-self pollen to effect fertilization. For Petunia inflata, the S-RNase gene encodes pistil specificity and multiple S-locus F-box (SLF) genes encode pollen specificity. Each SLF produced in pollen interacts with a subset of non-self S-RNases to mediate their ubiquitination and degradation by the 26S proteasome. RATIONALE S-locus F-box has been proposed to function as a component of the conventional SCF (SKP1-CULLIN-F-box protein) complex, based on the finding that two SKP1-like proteins, AhSSK1 (Antirrhinum hispanicum SLF-interacting SKP1-like1) and PhSSK1 (Petunia hybrida SSK1), interact with the F-box domain of some allelic variants of SLF. However, we previously showed that PiSLF (P. inflata SLF) did not interact with any SKP1 of P. inflata or Arabidopsis thaliana, but instead interacted with a RING-finger protein, PiSBP1 (P. inflata S-RNase-Binding Protein1), which may also play the role of SKP1. Thus, the biochemical nature of the SLF-containing complex is as yet unclear. PRINCIPAL RESULTS To examine whether the F-box domain of PiSLF is required for SI function, we expressed a truncated PiSLF(2) (S(2) allelic variant) without this domain in S(2)S(3) plants and showed that, unlike the full-length PiSLF(2), it did not cause breakdown of SI in S(3) pollen. We identified PiSSK1 (P. inflata SSK1) and found that it did not interact with PiSLF(1), PiSLF(2) or PiSLF(3). CONCLUSIONS The finding that the truncated PiSLF(2) did not cause breakdown of SI in S(3) transgenic pollen suggests that the F-box domain of PiSLF(2) is required for mediating degradation of S(3)-RNase, a non-self S-RNase, in S(3) pollen, and thus is required for SI function. The finding that PiSSK1 did not interact with three allelic variants of PiSLF is consistent with our previous finding that PiSLF might not be in a conventional SCF complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-incompatibility in Petunia inflata: the relationship between a self-incompatibility locus F-box protein and its non-self S-RNases.

The highly polymorphic S (for self-incompatibility) locus regulates self-incompatibility in Petunia inflata; the S-RNase regulates pistil specificity, and multiple S-locus F-box (SLF) genes regulate pollen specificity. The collaborative non-self recognition model predicts that, for any S-haplotype, an unknown number of SLFs collectively recognize all non-self S-RNases to mediate their ubiquitin...

متن کامل

Identification and characterization of components of a putative petunia S-locus F-box-containing E3 ligase complex involved in S-RNase-based self-incompatibility.

Petunia inflata S-locus F-box (Pi SLF) is thought to function as a typical F-box protein in ubiquitin-mediated protein degradation and, along with Skp1, Cullin-1, and Rbx1, could compose an SCF complex mediating the degradation of nonself S-RNase but not self S-RNase. We isolated three P. inflata Skp1s (Pi SK1, -2, and -3), two Cullin-1s (Pi CUL1-C and -G), and an Rbx1 (Pi RBX1) cDNAs and found...

متن کامل

Four previously identified Petunia inflata S-locus F-box genes are involved in pollen specificity in self-incompatibility.

Dear Editor, Petunia possesses self-incompatibility (SI), by which pistils reject self-pollen but accept non-self pollen for fertilization (de Nettancourt, 2001; Iwano and Takayama, 2012). Genes that regulate self/non-self recognition between pollen and pistil are located at the highly polymorphic S-locus. An S-haplotype contains the pistil-specific S-RNase gene that regulates pistil specificit...

متن کامل

Transcriptome analysis reveals the same 17 S-locus F-box genes in two haplotypes of the self-incompatibility locus of Petunia inflata.

Petunia possesses self-incompatibility, by which pistils reject self-pollen but accept non-self-pollen for fertilization. Self-/non-self-recognition between pollen and pistil is regulated by the pistil-specific S-RNase gene and by multiple pollen-specific S-locus F-box (SLF) genes. To date, 10 SLF genes have been identified by various methods, and seven have been shown to be involved in pollen ...

متن کامل

Insight into S-RNase-based self-incompatibility in Petunia: recent findings and future directions

S-RNase-based self-incompatibility in Petunia is a self/non-self recognition system that allows the pistil to reject self-pollen to prevent inbreeding and to accept non-self pollen for outcrossing. Cloning of S-RNase in 1986 marked the beginning of nearly three decades of intensive research into the mechanism of this complex system. S-RNase was shown to be the sole female determinant in 1994, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011